Preview

South Russian Journal of Therapeutic Practice

Advanced search

Evaluation of markers of apoptotic processes and peroxide oxidation of lipids of the mitochondrial fraction of the liver of animals carrying Lewis epidermoid carcinoma at different stages of the development of the tumor process with the introduction of organotin compounds with a tread fragment

https://doi.org/10.21886/2712-8156-2023-4-4-89-94

Abstract

Objective: to evaluate changes in markers of apoptotic processes and lipid peroxidation (POL) by accumulation of malondialdehyde (MDA) in the mitochondrial fraction of the liver of animals carrying Lewis epidermoid carcinoma at different stages of the tumor process with the introduction of bis-(3,5-di-tert-butyl-4-hydroxyphenyl)dimethylolol thiolate (Me-3) and (3,5-di-tert-butyl-4-hydroxyphenyl)triphenylololate (Me-5). Materials and methods: the work was performed using laboratory animals - female mice of the C57Bl line/6. 48 hours after the Lewis epidermoid carcinoma strain was transplanted, substances Me-3 and Me-5 were administered once a day for 5 days intraperitoneally at the maximum effective dose of 375 mg/kg and 250 mg/kg, respectively. Animals of the control group were injected with a carrier in similar modes and volumes. Results: when Me-3 was administered at the maximum effective dose on days 7 and 21, a decrease in the level of all the studied indicators was noted, which indicates a high actioxidant activity of a hybrid organotin compound containing one tin-containing [-Sn(CH3)2] and two protective antioxidant fragments (3,5-di-tert-butyl-4-hydroxyphenyl). The compound Me-5 has a more pronounced prooxidant potential, as evidenced by high levels of damage to mitochondrial DNA (8–hydroxy–2'–deoxyguanosine) and malonic dialdehyde. Conclusion: the introduction of bis-(3,5-di-tert-butyl-4-hydroxyphenyl)dimethylolol (Me-3) and (3,5-di-tert-butyl-4-hydroxyphenyl)triphenylolol (Me-5) compounds revealed a change in the pro/antioxidant state and the launch of apoptotic processes in liver cells.

About the Authors

M. S. Alhusein-Kulyaginova
https://orcid.org/0000-0001-5123-5289
Rostov State Medical University
Russian Federation

Margarita S. Alkhusein–Kulyaginova - Assistant of the Department of Pathological Physiology, Rostov State Medical University.

Rostov-on-Don



M. A. Dodokhova
Rostov State Medical University
Russian Federation

Margarita A. Dodokhova - Dr. Sci. (Med.), Associate Professor of the Department of Pathological Physiology, Rostov State Medical University.

Rostov-on-Don



S. Z. Agarizaeva
Rostov State Medical University
Russian Federation

Sabrina Z. Agarizayeva - student of the Pediatric Faculty, Rostov State Medical University.

Rostov-on-Don



S. I. Starostin
Rostov State Medical University
Russian Federation

Sergey I. Starostin - student of the Faculty of General Medicine, Rostov State Medical University.

Rostov-on-Don



L. Y. Klimova
Rostov State Medical University
Russian Federation

Larisa Y. Klimova - student of the Department of Laboratory Diagnostics, College of the Rostov State Medical University.

Rostov-on-Don



N. S. Silin
Rostov State Medical University
Russian Federation

Nikita S. Silin - student of the Pediatric Faculty, Rostov State Medical University.

Rostov-on-Don



M. V. Gulyan
Rostov State Medical University
Russian Federation

Marina V. Gulyan - Cand. Sci. (Med.), Associate Professor of the Department of Pathological Physiology of the Rostov State Medical University.

Rostov-on-Don



D. B. Shpakovsky
Lomonosov Moscow State University
Russian Federation

Dmitry B. Shpakovsky - Cand. Sci. (Chemistry.), Senior Researcher at the Bioelementoorganic Chemistry Research Laboratory of the Department of Medical Chemistry and Fine Organic Synthesis, Lomonosov Moscow State University.

Moscow



E. R. Milaeva
Lomonosov Moscow State University
Russian Federation

Elena R. Milaeva - Dr. Sci. (Chemistry.), Professor, Head of the Department of Medical Chemistry and Fine Organic Synthesis of Lomonosov Moscow State University, Faculty of Chemistry.

Moscow



I. M. Kotieva
Rostov State Medical University
Russian Federation

Inga M. Kotieva - Dr. Sci. (Med.), Vice–Rector for Research, Professor of the Department of Pathological Physiology of the Rostov State Medical University.

Rostov-on-Don



References

1. Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol. 2022;38(3):377-406. Erratum in: Cell Biol Toxicol. 2022. PMID: 34661828. DOI: 10.1007/s10565-021-09662-5.

2. Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol. 2022;15(1):98. DOI: 10.1186/s13045-022-01317-0.

3. Greier MC, Runge A, Dudas J, Pider V, Skvortsova II, Savic D, et al. Mitochondrial dysfunction and epithelial to mesenchymal transition in head neck cancer cell lines. Sci Rep. 2022;12(1):13255. DOI: 10.1038/s41598-022-16829-5.

4. Lee W, Song G, Bae H. Matairesinol Induces Mitochondrial Dysfunction and Exerts Synergistic Anticancer Effects with 5-Fluorouracil in Pancreatic Cancer Cells. Mar Drugs. 2022;20(8):473. DOI: 10.3390/md20080473.

5. Yang W, Zhou C, Sun Q, Guan G. Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR inhibition. Can J Physiol Pharmacol. 2022;100(7):612-620. DOI: 10.1139/cjpp-2021-0577.

6. Çınar Ayan İ, Güçlü E, Vural H, Dursun HG. Piceatannol induces apoptotic cell death through activation of caspase-dependent pathway and upregulation of ROS-mediated mitochondrial dysfunction in pancreatic cancer cells. Mol Biol Rep. 2022;49(12):11947-11957. DOI: 10.1007/s11033-022-08006-8.

7. Devi J, Boora A, Rani M, Arora T. Recent Advancements in Organotin(IV) Complexes as Potent Cytotoxic Agents. Anticancer Agents Med Chem. 2023;23(2):164-191. DOI: 10.2174/1871520622666220520095549

8. Attanzio A, Ippolito M, Girasolo MA, Saiano F, Rotondo A, Rubino S, et al. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells. J Inorg Biochem. 2018;188:102-112. DOI: 10.1016/j.jinorgbio.2018.04.006

9. Додохова М.А., Сафроненко А.В., Котиева И.М., Милаева Е.Р., Шпаковский Д.Б., Трепель В.Г., и др. Вторичная митохондриальная дисфункция как механизм противоопухолевого и антиметастатического действия гибридных оловоорганических соединений. Вопросы биологической, медицинской и фармацевтической химии. 2021;24(11):28-33. DOI: 10.29296/25877313-2021-11-05

10. Додохова М.А., Котиева И.М., Сафроненко А.В., Трепель В.Г., Алхусейн-Кулягинова М.С., Шпаковский Д.Б., и др. Гибридные оловоорганические соединения - модуляторы апоптотических процессов в печени при однократном и многократном введении крысам линии Wistar. Уральский медицинский журнал. 2021;20(4):18-23. DOI: 10.52420/2071-5943-2021-20-4-18-23

11. Котиева И.М., Франциянц Е.М., Каплиева И.В., Бандовкина В.А., Козлова Л.С., Трепитаки Л.К., и др. Влияние хронической боли на некоторые метаболические процессы в коже самок мышей. Российский журнал боли. 2018;4(58):46-54. DOI: 10.25731/RASP.2018.04.027

12. Кит О.И., Франциянц Е.М., Котиева М.М., Каплиева И.В., Трепитаки Л.К., Бандовкина В.А., и др. Динамика тканевой системы регуляторов плазминогена при меланоме кожи на фоне хронической боли у самок мышей. Трансляционная медицина. 2018;5(2):38-46. DOI: 10.18705/2311-4495-2018-5-2-38-46

13. Кит О.И., Котиева И.М., Франциянц Е.М., Каплиева И.В., Трепитаки Л.К., Бандовкина В.А., и др. Нейромедиаторные системы головного мозга самок мышей в динамике роста злокачественной меланомы, воспроизведенной на фоне хронической боли. Патогенез. 2017;15(4):49-55. DOI: 10.25557/GM.2018.4.9749

14. Егорова М.В., Афанасьев С.А. Выделение митохондрий из клеток и тканей животных и человека: современные методические приемы. Сибирский медицинский журнал (г. Томск). 2011;26(1-1):22-28. eLIBRARY ID: 15778989; EDN: NHHOZX

15. Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol. 2015;3:40. DOI: 10.3389/fcell.2015.00040

16. Lee HY, Nga HT, Tian J, Yi HS. Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells. 2021;10(8):1901. DOI: 10.3390/cells10081901

17. Jayawardhana AMDS, Zheng YR. Interactions between mitochondria-damaging platinum(IV) prodrugs and cytochrome c. Dalton Trans. 2022;51(5):2012-2018. DOI: 10.1039/d1dt03875c.

18. Song WJ, Jiang P, Cai JP, Zheng ZQ. Expression of Cytoplasmic 8-oxo-Gsn and MTH1 Correlates with Pathological Grading in Human Gastric Cancer. Asian Pac J Cancer Prev. 2015;16(15):6335-8. DOI: 10.7314/apjcp.2015.16.15.6335.

19. Chauhan AK, Mittra N, Singh G, Singh C. Mitochondrial Dysfunction Contributes To Zinc-induced Neurodegeneration: a Link with NADPH Oxidase. J Mol Neurosci. 2022;72(6):1413-1427. DOI: 10.1007/s12031-022-02008-8.

20. Sun X, Zhang T, Cai Y, Yang K, Peng T, Liu R, et al. Tonkinensine B induces apoptosis through mitochondrial dysfunction and inactivation of the PI3K/AKT pathway in triple-negative breast cancer cells. J Pharm Pharmacol. 2021;73(10):1397-1404. DOI: 10.1093/jpp/rgab108.

21. Avrutsky MI, Troy CM. Caspase-9: A Multimodal Therapeutic Target With Diverse Cellular Expression in Human Disease. Front Pharmacol. 2021;12:701301. DOI: 10.3389/fphar.2021.701301.

22. Dodokhova M.A., Safronenko A.V., Kotieva I.M., Alkhuseyn-Kulyaginova M.S., Shpakovsky D.B., Milaeva E.R. Impact of organotin compounds on the growth of epidermoid Lewis carcinoma. Research Results in Pharmacology. 2021;7(4):81-88. Doi: 10.3897/rrpharmacology.7.71455


Review

For citations:


Alhusein-Kulyaginova M.S., Dodokhova M.A., Agarizaeva S.Z., Starostin S.I., Klimova L.Y., Silin N.S., Gulyan M.V., Shpakovsky D.B., Milaeva E.R., Kotieva I.M. Evaluation of markers of apoptotic processes and peroxide oxidation of lipids of the mitochondrial fraction of the liver of animals carrying Lewis epidermoid carcinoma at different stages of the development of the tumor process with the introduction of organotin compounds with a tread fragment. South Russian Journal of Therapeutic Practice. 2023;4(4):89-94. (In Russ.) https://doi.org/10.21886/2712-8156-2023-4-4-89-94

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-8156 (Print)