Preview

South Russian Journal of Therapeutic Practice

Advanced search

Clinical features of ischemic heart disease in patients after COVID-19 infection and coronary artery bypass graft surgery

https://doi.org/10.21886/2712-8156-2023-4-2-46-55

Abstract

Aim. To evaluate whether the history of coronavirus disease 2019 (COVID-19) in patients undergone  cardiac surgery (coronary artery bypass grafting - CABG) causes alterations in their clinical and laboratory status.

Materials and methods. Clinical data of 42 patients undergone CABG in 2019 were analyzed. Informed written consent was obtained from all participants in accordance with the Declaration of Helsinki. Determination of COVID-19 positive or negative status was performed due to results of nasal and throat swabs using reverse transcriptase-polymerase chain reaction (RT-PCR) or positive serum COVID-19 antibodies. Statistical analyses were performed using Jamovi software.

Results. In COVID-19 positive patients compared to COVID-19 negative patients: the level of serum cholesterol was significantly  higher: 5,22 [4,03; 6,22] vs. 4.06 [3,56; 4,88] mmol/L, р = 0,005; OR 0,492 [0,282; 0,858] 95% CI, p ratio 0,012; the level of low-density lipoproteins was significantly higher: 3,27 [2,16; 3,96] vs. 2,28 [1,60; 3,08] mmol/L, p 0,014; OR 0,518 [0,294; 0,914] 95% CI, p ratio 0,023; the incidence of chronic kidney disease stage C3a (CKD) was higher: 7 (16,7%) vs. 1 (2,4%), p 0,008; OR 0,0779 [0,00855; 0,710] 95% CI, p ratio 0,024; tendency to a higher serum creatinine: 89,7 [83,0; 105,0] vs. 81,0 [75,0; 90,5] μmol/L, p 0,060; OR 0,976 [0,945; 1,01] 95% CI, p ratio 0,153; tendency to a lower glomerular  filtration rate using  CKD-EPI: 66,1 ± 17,3 vs. 75,7 ± 16,1 ml/min/1,73m2, p 0,034; OR 1,0368 [0,9962; 1,08] 95% CI, p ratio 0,076; tendency to a higher serum D-dimer level: 154 [104; 364] vs. 137 [97; 173] ng/ml, p 0,07; OR 0,997 [0,994; 1,0] 95% CI, p ratio 0,141; tendency to a higher mean heart rate 75 [71; 79,5] vs. 72 [63; 74,5] bpm, p 0,026; PR 0,951 [0,886; 1,02] 95% CI, p ratio 0,169. Heart rate variability parameters haven’t shown statistical significance  between groups.

Conclusion. Patients with a history of COVID-19 who underwent CABG had alterations in their clinical and laboratory status. These alterations should be thoroughly investigated to make a forehanded change in their therapy.

About the Authors

A. O. Loginova
Research Institute – Specialized clinical hospital of cardiovascular surgery n.a. academician B.A. Korolyev
Russian Federation

Anastasiia O. Loginova - Cardiologist,  Research Institute - Specialized clinical hospital of cardiovascular surgery by academician B.A. Korolyev.

Nizhny Novgorod



E. I. Tarlovskaya
Privolzhsky Research Medical University
Russian Federation

Ekaterina I. Tarlovskaya - Dr. Sci. (Med.), Professor, Head of the department of cardiology and therapy, Privolzhsky Research Medical University.

Nizhny Novgorod



L. N. Ancigina
Research Institute – Specialized clinical hospital of cardiovascular surgery n.a. academician B.A. Korolyev
Russian Federation

Ludmila N. Ancigina - Cand. Sci. (Med.), therapist, Research Institute - Specialized clinical hospital of cardiovascular surgery by academician B.A. Korolyev.

Nizhny Novgorod



P. V. Pimenova
Research Institute – Specialized clinical hospital of cardiovascular surgery n.a. academician B.A. Korolyev
Russian Federation

Polina V. Pimenova - Physician  of functional  diagnostics, Research Institute - Specialized clinical hospital of cardiovascular surgery by academician B.A. Korolyev.

Nizhny Novgorod



References

1. Dangas GD, Farkouh ME, Sleeper LA, Yang M, Schoos MM, Macaya C, et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64(12):1189-97. doi: 10.1016/j.jacc.2014.06.1182

2. Bhattacharya S, Bandyopadhyay A, Pahari S, Das S, Dey AK. COVID-19 presenting after Elective Off-pump Coronary Artery Bypass Grafting and Lessons Learned. Egypt Heart J. 2022;74(1):48. doi: 10.1186/s43044-022-00286-6.

3. Bhattacharya S, Bandyopadhyay A, Pahari S, Das S, Dey AK. Outcomes of urgent coronary artery bypass grafting in patients who have recently recovered from COVID-19 infection, with a median follow-up period of twelve months: our experience. Egypt Heart J. 2022;74(1):66. doi: 10.1186/s43044-022-00304-7

4. Fattouch K, Corrao S, Augugliaro E, Minacapelli A, Nogara A, Zambelli G, et al. Cardiac surgery outcomes in patients with coronavirus disease 2019 (COVID-19): A case-series report. J Thorac Cardiovasc Surg. 2022;163(3):1085-1092.e3. doi: 10.1016/j.jtcvs.2020.09.138.

5. Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev. 2021;37(2):e3377. doi: 10.1002/dmrr.3377.

6. van der Voort PHJ, Moser J, Zandstra DF, Muller Kobold AC, Knoester M, Calkhoven CF, et al. Leptin levels in SARS-CoV-2 infection related respiratory failure: A cross-sectional study and a pathophysiological framework on the role of fat tissue. Heliyon. 2020;6(8):e04696. doi: 10.1016/j.heliyon.2020.e04696

7. Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023;11(2):120-128. doi: 10.1016/S2213-8587(22)00355-2

8. Farley SE, Kyle JE, Leier HC, Bramer LM, Weinstein JB, Bates TA, et al. A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nat Commun. 2022;13(1):3487. doi: 10.1038/s41467-022-31097-7

9. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089-97. doi: 10.1038/ncb1631. Erratum in: Nat Cell Biol. 2007;9(10):1216. PMID: 17721513.

10. Roingeard P, Hourioux C. Hepatitis C virus core protein, lipid droplets and steatosis. J Viral Hepat. 2008;15(3):157-64. doi: 10.1111/j.1365-2893.2007.00953.x

11. Задумина Д. Н., Скворцов В. В. Изменение гематологических показателей при COVID-19. Лечащий Врач. 2022;11(25):30-36. DOI: 10.51793/OS.2022.25.11.005

12. Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al.; Irish COVID-19 Vasculopathy Study (iCVS) investigators. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546-2553. doi: 10.1111/jth.15490

13. Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007-1014. doi: 10.1038/s41379-020-0536-x

14. Townsend L, Fogarty H, Dyer A, Martin-Loeches I, Bannan C, Nadarajan P, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19(4):1064-1070. doi: 10.1111/jth.15267

15. Hilton J, Boyer N, Nadim MK, Forni LG, Kellum JA. COVID-19 and Acute Kidney Injury. Crit Care Clin. 2022;38(3):473-489. doi: 10.1016/j.ccc.2022.01.002

16. Han X, Ye Q. Kidney involvement in COVID-19 and its treatments. J Med Virol. 2021;93(3):1387-1395. doi: 10.1002/jmv.26653

17. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. LancetRespir Med. 2020;8(5):475-481. doi: 10.1016/S2213-2600(20)30079-5. Erratum in: LancetRespir Med. 2020;8(4):e26. PMID: 32105632; PMCID: PMC7102538.

18. Abbate M, Rottoli D, Gianatti A. COVID-19 Attacks the Kidney: Ultrastructural Evidence for the Presence of Virus in the Glomerular Epithelium. Nephron. 2020;144(7):341-342. doi: 10.1159/000508430

19. Nasr SH, Kopp JB. COVID-19-Associated Collapsing Glomerulopathy: An Emerging Entity. Kidney Int Rep. 2020;5(6):759-761. doi: 10.1016/j.ekir.2020.04.030

20. Ferlicot S, Jamme M, Gaillard F, Oniszczuk J, Couturier A, May O, et al.; AP-HP/Universities/Inserm COVID-19 research collaboration. The spectrum of kidney biopsies in hospitalized patients with COVID-19, acute kidney injury, and/or proteinuria. Nephrol Dial Transplant. 2021:gfab042. doi: 10.1093/ndt/gfab042. Epub ahead of print.

21. Pfister F, Vonbrunn E, Ries T, Jäck HM, Überla K, Lochnit G, et al. Complement Activation in Kidneys of Patients With COVID-19. Front Immunol. 2021;11:594849. doi: 10.3389/fimmu.2020.594849

22. Choudhry N, Li K, Zhang T, Wu KY, Song Y, Farrar CA, et al. The complement factor 5a receptor 1 has a pathogenic role in chronic inflammation and renal fibrosis in a murine model of chronic pyelonephritis. Kidney Int. 2016;90(3):540-54. doi: 10.1016/j.kint.2016.04.023.

23. Sharkey RA, Mulloy EM, O’Neill SJ. The acute effects of oxygen and carbon dioxide on renal vascular resistance in patients with an acute exacerbation of COPD. Chest. 1999;115(6):1588-92. doi: 10.1378/chest.115.6.1588

24. Koyner JL, Murray PT. Mechanical ventilation and the kidney. Blood Purif. 2010;29(1):52-68. doi: 10.1159/000259585.

25. Joannidis M, Forni LG, Klein SJ, Honore PM, Kashani K, Ostermann M, et al. Lung-kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup. Intensive Care Med. 2020;46(4):654-672. doi: 10.1007/s00134-019-05869-7.

26. Feigofsky S, Fedorowski A. Defining Cardiac Dysautonomia - Different Types, Overlap Syndromes; Case-based Presentations. J Atr Fibrillation. 2020;13(1):2403. doi: 10.4022/jafib.2403.

27. Aranyó J, Bazan V, Lladós G, Dominguez MJ, Bisbal F, Massanella M, et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci Rep. 2022;12(1):298. doi: 10.1038/s41598-021-03831-6.

28. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020;77(8):1018-1027. doi: 10.1001/jamaneurol.2020.2065.

29. Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41(10):2657-2669. doi: 10.1007/s10072-020-04575-3.

30. Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135

31. Formenti P, Coppola S, Massironi L, Annibali G, Mazza F, Gilardi L, et al. Left Ventricular Diastolic Dysfunction in ARDS Patients. J Clin Med. 2022;11(20):5998. doi: 10.3390/jcm11205998.

32. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092.

33. Li SS, Cheng CW, Fu CL, Chan YH, Lee MP, Chan JW, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108(15):1798-803. doi: 10.1161/01.CIR.0000094737.21775.32


Review

For citations:


Loginova A.O., Tarlovskaya E.I., Ancigina L.N., Pimenova P.V. Clinical features of ischemic heart disease in patients after COVID-19 infection and coronary artery bypass graft surgery. South Russian Journal of Therapeutic Practice. 2023;4(2):46-55. (In Russ.) https://doi.org/10.21886/2712-8156-2023-4-2-46-55

Views: 677


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2712-8156 (Print)